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Abstract. The present investigation is focused on the
solution of a dynamic inverse problem which is con-
cerned with the assessment of damage in structures by
means of measured vibration data. This inverse problem
has been presented as a optimization problem and has
been solved through the use of the iterative regularization
method, i.e. the Conjugate Gradient method. The results
have been presented in a satisfactory form when a small
structure with few degrees-of-freedom (DOF) is consid-
ered, however when a higher DOF-structure is consid-
ered, the simple application of the iterative regularization
method is not more satisfactory, being necessary the ap-
plication of an additional methodology. To solve this dif-
ficulty, in this paper a new approach, based on the use of
the Genetic Algorithm (GA) method has been proposed.
The GA method is used to generate a primary solution
which is employed as the initial guess for the conjugate
gradient method. The application of this new approach
has been showed that better results can be achieved, al-
though the computational time for the application here
analyzed could be increase. The damage estimation has
been evaluated using noiseless and noisy synthetic exper-
imental data, and the reported results are concerned with
a truss and a beam-like structures both modeled through a
finite element technique. Moreover, in order to take into
account the reduced set of experimental data to be em-
ployed in the optimization algorithm, a Guyan reduction
technique has been adopted on the finite element formu-
lation.

INTRODUCTION
Considerable research and effort over the last

few decades has taken place in the field of system
identification problem, for different reasons. One
of the most interesting applications involves the
monitoring of structural integrity through the iden-
tification of damage. It is well known that damage
modifies the dynamic response of a structure and,
at the same time, that changes in its behavior may
be associated with the decay of the system’s me-
chanical properties [1].

The damage identification problem is displayed
as an inverse vibration problem, since the damage

evaluation is achieved through the determination of
the stiffness coefficient variation, or the stiffness
coefficient by itself. The inverse problem solution
is generally unstable, therefore, small perturbations
in the input data, like random errors inherent to the
measurements used in the analysis, can cause large
oscillations on the solution. In general the inverse
problem, i.e. the ill-posed problem, is presented
as a well-posed functional form, whose solution is
obtained through an optimization procedure.

Based on these considerations, various papers
have examined the use of measured variations in
dynamic behavior to detect structural damage. A
variety of experimental, numerical and analyti-
cal techniques has already been proposed to solve
the damage identification problem, and have re-
ceived notable attention due to its practical applica-
tions [2]. These methods are usually classified un-
der several categories, such as frequency and time
domain methods, parametric and non-parametric
models, deterministic and stochastic approaches [3,
4].

Among the classical methods, recently the use
of the conjugate gradient method with the adjoint
equation [5, 6], or Variational Approach, which has
been used successfully in thermal sciences, has also
been presented as a satisfactory choice to face the
damage identification problem. Some papers re-
garding to the use of the Alifanov’s method in in-
verse vibration problems can be found in the litera-
ture, for instance, Huang [7, 8] has been estimated
the time-dependent stiffness coefficients consider-
ing spring-mass systems with one and multiple de-
grees of freedom. Also, Castello and Rochinha
[9] have been identified the elastic and damping
parameters of a bar-like structure using the Ali-
fanov’s method. On the other hand, among the
non-classical methods the stochastic methods, rep-
resented by the GA method, represent a powerful
choice to face non trivial optimization problems.
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GAs are search algorithms based on the mechan-
ics of nature selection and natural genetics [10],
which are design to efficiently search large, non-
linear, discrete and poorly search space where ex-
pert knowledge is scarce or difficult to model and
where classical optimization techniques fail. Some
papers regarding to the use of the GA method alone
can be found in the literature, for instance Bar-
bosa and Borges [11] have been identified damage
scenarios in a framed structure, while Mares and
Surace [12] have been used the GA method for the
simultaneous location and quantification of damage
in a truss and a beam structures.

It has been noticed that when the system consid-
ered presents a slightly high number of DOFs, the
conjugate gradient method becomes sensible in re-
lation to some parameters, such as the initial guess.
By virtue of the above considerations, the simple
application of the iterative regularization method
could be not more satisfactory, being necessary the
application of an additional methodology. In this
work, a hybrid approach is proposed to solve the
inverse structural vibration problem for the dam-
age identification, which can be estimated through
the determination of some stiffness parameters of
the structure. The genetic algorithm is applied ini-
tially in order to determine a better initial guess for
a following application of the standard conjugate
gradient method. This hybrid approach has already
been used for an inverse damage problem consider-
ing spring-mass systems and it has produced good
results [13, 14] and in this work more complicated
structures will be studied and also the effect of the
noisy in the experimental data has been considered.

THE INVERSE ANALYSIS
The inverse vibration problem of estimation of

the stiffness coefficients has been considered in
this work. The unknown stiffness coefficients have
been recovered from the synthetic system displace-
ment measurements of a forced dynamical system
with � -DOF. The inverse analysis with the conju-
gate gradient method involves the following steps
[5, 6]:

(i) the solution of direct problem;

(ii) the solution of sensitivity problem;

(iii) the solution of adjoint problem and the gradi-
ent equation;

(iv) the conjugate gradient method of minimiza-
tion;

(v) the stopping criteria;

(vi) the solution algorithm.

Next, a brief description of basic procedures in-
volved in each of these steps is presented.

The Direct Problem
The � -DOF dumped systems considered in this

work are presented in the Figs. 1-2 and the math-
ematical formulation of this forced vibration sys-
tems is given by

������ ����� ����� ��������� � ���� � (1)

with initial conditions

���� � �� and ����� � ��� � (2)

Here� represents the system mass matrix,����
the time-dependent stiffness matrix,���� the time-
dependent damping matrix, ���� the external forces
vector, and ���� the displacements vector. There
exists no analytical solution for Eq. (1) for any ar-
bitrary functions of ����, ����, and ����, obtained
through the finite element method. For this reason,
the numerical solution with the Newmarkmethod
[15], will be applied to solve Eq. (1). The direct
problem calculates the system displacement ����,
if initial conditions, system parameters �, ����
and ����, and the time-dependent external forces
���� are known.

Figure 1: The three-bay truss structure considered in this
work.

Figure 2: The ��-DOF beam structure considered in this
work.

The Sensitivity Problem
The problem involves � unknown time-

dependent stiffness parameters, which constitute
the elements of the stiffness matrix ���� �
� ������, where���� � ������� ������ ���� and the
parameters �����, � � �� ���� � represent the struc-
tural stiffness parameters of the finite element; for
instance for a bar-like structure �� � �	
��, for
a beam-like structure �� � ��
���, where � is
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the Young’s module, � is the inertial moment, 	
is the cross section area and �� is the length of
the finite element. In order to derive the sensitiv-
ity problem for each unknown function � ����, each
unknown stiffness parameter should be perturbed
at a time. Supposing that the ����� is perturbed
by a small amount������ Æ��� 
�, where the Æ���
is the Dirac-delta function and 
 � �� � � � � � , it
results in a small change in displacements by the
amounts �������. The sensitivity problem is ob-
tained by replacing in the direct problem, Eqs. (1)-
(2), ����� by ����� � ������ Æ�� � 
�, ����� by
�������������, and by subtracting from the result-
ing expression the original direct problem, and also
by neglecting the second-order terms. Therefore,
� sensitivity problems have been obtained, since

 � �� � � � � � , i.e., a different sensitivity problem
for each perturbed stiffness parameter. The sensi-
tivity problem is defined by the following system
of differential equations
�������������� ����������������� ������� ���� �

(3)
where 
 � �� � � � � � and with initial conditions

������ � � and � ������ � � � (4)

The Adjoint Problem and the Gradient Equa-
tion

In general the inverse problem does not satisfy
the requirements of existence and uniqueness, then
it must be solved as an optimization problem re-
quiring that the unknown function ���� should
minimize the functional vector � ������ defined by

� ������ �

� ��

�

������ ��������T ������ �������� ���

(5)
where �� is the final time, ���� and ������� are
the computed and measured displacements at time
�, respectively. The adjoint problem is developed
by multiplying Eq. (1) by the Lagrangemulti-
plier vector ����, integrating the resulting expres-
sion over time domain and then adding this result
to the functional given by Eq. (5). The resulting
expression is given by

� ��� �

� ��

�

��� �����T ��� ����� ���

�

� ��

�

�T ������ ������ �� �� � (6)

The variation�� � ������ of the functional is ob-
tained by perturbing���� by ������ and ���� by
������ in Eq. (6), and subtracting from it the orig-
inal Eq. (6). Neglecting the second-order terms,
the resulting expression is given by

��� ��� �

� ��

�

� ��� �����T��� ���

�

� ��

�

�
T �
����� ��� ��� ����� ���� �

�
���

(7)

When the second term of the right-hand side of
this expression is integrated by parts and the null
initial conditions of the sensitivity problem are em-
ployed, the following adjoint problem is obtained
for the determination of the Lagrangemultiplier
vector ����. Since the adjoint problem has no de-
pendence on the perturbed stiffness (���), the
subscript 
 has been neglected and the adjoint prob-
lem is defined by the expression

� 	��������� 
������������� � � ��������� ����� �
(8)

with final conditions

���� � � � and ����� � � � � (9)

The adjoint problem is different from the standard
initial value problems because a final time condi-
tion at time � � �� is specified instead of the classi-
cal initial condition at � � �. However, the problem
(8) can be transformed to an initial value problem
by introducing a new time variable: � � �� � �.
Then the standard technique of Newmarkmethod
can be applied for the solution of the transformed
problem.

During the process for obtaining the adjoint
problem, the following integral term was used

�� ��� �

� ��

�

�T ��� �� � (10)

In this work the inverse vibration problem of stiff-
ness estimation has been solved as a parameter es-
timation problem where the stiffness parameters
have been assumed constants; i.e. ���� �const.,
during the time. Therefore, the integral term left
can be written as

�� ��� �

��
���

� ��

�

�T��� � �� � (11)

By definition, the directional derivative of � ��� in
the direction of a vector�� is given by [6]

�� ��� �

��
���

� �

���� � (12)

where � � is the gradient direction of the functional
� . A comparison of Eqs. (11) and (12) reveals that
the 
�� component of the gradient direction, � �

� , is
given by

� �

� ��� �

� ��

�

�T���� � �� � (13)
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where � ��� refers to the 
�� perturbed stiffness

matrix, i.e. � ��� � �����
������.

The Conjugate Gradient Method of Minimiza-
tion

The iterative procedure based on the conjugate
gradient method is used for the estimation of the
unknown stiffness parameters� given in the form
[5, 6]:

�
	�� � �	 � �	

�
	� � � �� �� 	� ����� (14)

where �	 is the step size vector and �	 is the di-
rection of descent vector at the step � defined as
[5]

�
	 � � �	 � �	�	��� with �� � �� (15)

where �	 is the conjugate coefficient vector. Note
that Eq. (14) is a iterative procedure for which
the stopping criteria will be discussed in next sec-
tion. It should be noticed that the special case
�	 � �, for any �, corresponds to the steepest de-
scent method. Different definitions of the conju-
gate coefficient �	 are reported in the literature [5,
16]. In the present work the conjugate coefficient
vector has been adopted as

�	 �
�� �	����

�

�� �	������
�
� � � �� 	� ��� (16)

The step size vector �	, appearing in Eq. (14), is
determined by minimizing the functional � ��	���
given by Eq. (5) with respect �	, i.e.

���
��

� ��������� � ���
��

� ��

�

�����
� �� ��� � ������ ���

(17)
By performing a Taylor-series expansion of the in-
tegrand of Eq. (17) the value of �	 for the mini-
mum can be evaluated analiticaly:

�	 �

�� ��

�

�������T �������

���

�

�

�� ��

�

�������T ������ ��������

�
�� � (18)

The Discrepancy Principle for the Stopping Cri-
teria

In the absence of measurement errors, due to the
experimental devices, one can use the customary
stopping criteria

� ��� � ��� (19)

where � ��� is defined by Eq. (5) and �� is a
small specified number. However, in practical ap-
plications, measurement errors are always present;

therefore the Discrepancy Principle[17, 5] as de-
scribed below should be used to establish the stop-
ping criteria.

Let the standard deviation � of the measurement
errors be the same for all sensors and measure-
ments, that is,

����� ������� �� �� (20)

Introducing this result into Eq. (5), we obtain

� ��

�

�� �� � �� �� � ��� (21)

Then the discrepancy principle for the stopping cri-
teria is taken as

� ��� � ��� (22)

The Solution Algorithm
The standard computational procedure of the

conjugate gradient method is summarized in the
following algorithm:

Step 1: Choose an initial guess��.

Step 2: Solve the direct problem, Eqs. (1)-(2), to
obtain ����.

Step 3: Solve the adjoint problem, Eqs. (8)-(9), to
obtain the Lagrangemultiplier vector ����.

Step 4: Knowing����, compute the gradient func-
tion vector � ���� from Eq. (13).

Step 5: Compute the conjugate coefficient vector
�	 from Eq. (16).

Step 6: Compute the direction of descent vector
�	 from Eq. (15).

Step 7: Setting �� � �
� [6], solve the sensitiv-

ity problem, Eqs. (3)-(4), to obtain�����.

Step 8: Compute the step size vector �	 from
Eq. (18).

Step 9: Compute�	�� from Eq. (14).

Step 10: Test if the stopping criteria, Eq. (22), is
satisfied. If not, go to step 2.

As mentioned before, the inverse vibration prob-
lem of damage identification, considered in this
work, have already been solved through the use of
the iterative regularization method, i.e. the Con-
jugate Gradient method [7, 8, 9]. The results
have been presented in a satisfactory form when
both lumped-parameter and bar-like forced systems
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have been considered using a small number of un-
known stiffness parameters. However, it has been
observed by the authors that when a slightly higher
number of unknown parameters is considered, the
application of the iterative regularization method,
in the standard form is not more satisfactory, being
necessary the application of an additional method-
ology [13, 14].

It has also been noticed that the initial guess
choice becomes more decisive when more stiffness
parameters are sought to be estimated. For avoid-
ing this difficulty, it has been proposed a new ap-
proach where the GA method is used to generate
a primary solution which is employed as the ini-
tial guess for the conjugate gradient method. This
new approach could be inserted in the above pro-
cedure as the new Step 1. The stochastic approach
has already been used in an inverse heat conduction
problem, as unique methodology, and has produced
good results [3], and also this proposed hybrid ap-
proach has already been used in an inverse vibra-
tion problem where a 10-DOF lumped parameter
system has been considered [13].

The Stochastic Method – Genetic Algorithm
Genetic algorithms are essentially optimization

algorithms whose solutions evolve somehow from
the science of genetics and the processes of natu-
ral selection - the Darwinian principle. They differ
from more conventional optimization techniques
since they work on whole populations of encoded
solutions, and each possible solution is encoded as
a gene.

The most important phases in standard GAs
are selection (competition), reproduction, mutation
and fitness evaluation. Selection is an operation
used to decide which individuals to use for re-
production and mutation in order to produce new
search points. Reproduction or crossover is the pro-
cess by which the genetic material from two parent
individuals is combined to obtain one or more off-
springs. Mutation is normally applied to one indi-
vidual in order to produce a new version of it where
some of the original genetic material has been ran-
domly changed. Fitness evaluation is the step in
which the quality of an individual is assessed [10].

The application of GA method to solve the prob-
lem of damage identification is also a minimiza-
tion problem, as well as the gradient conjugate
method. The same functional form, or fitness func-
tion, given by Eq. (5), is employed

� ��� �

� ��

�

������ ��������T ������ �������� �� �

where ������� is the experimental system displace-
ment vector and ���� is the system displacement
vector obtained obtained by Eqs. (1)-(2) using up-
dating values for the stiffness matrix.

In this GA implementation, the algorithm oper-
ates on a fixed-sized population which is randomly
generated initially. The members of this population
are fixed-length and real-valued strings that encode
the variable which the algorithm is trying to opti-
mize (�). Next, the evolutionary operators em-
ployed are presented: Tournament Selection [18],
Geometrical Crossover [19], Non-uniform Muta-
tion [19], Epidemical Operator [3].

REDUCED MODEL
A properly comparison of the real structural

model and the finite element model is possible
when the completeness of the experimental data
is available. However, the number of measured
DOFs use to be smaller than the number of DOFs
which describe the complete finite element model.
Usually, this problem is faced applying a reduction
technique: the original system is reduced to a sys-
tem whose new dimension is equal to the number
of measured DOFs, identified as principal DOFs.
In this work two different forced systems have been
considered: a 3-bay truss structure and a 20-DOF
beam structure. For the second one the Guyan Re-
duction technique [20] have been applied in order
to reduce the complete finite element model, of di-
mension �, to a reduced model which presents a de-
pendence on the measurable vertical displacements
only. In the Guyan reduction method the relation-
ship between the principal (�) and secondary (�)
DOFs is established using the static analysis, where
it is assumed that no external loads are applied to
the secondary DOFs. The relationship between the
complete and the principal measured DOFs is ex-
pressed as

� � 	� �� � (23)

where 	� is the � � � Guyan reduction matrix,
where the relevant expression is not reported here
for the sake of brevity. Now, the problems identi-
fied by the Eqs. (1)-(2), (3)-(4) and (8)-(9) have
been reduced and show an explicit dependency
only by the measured DOFs (the vertical displace-
ments of the beam). The new reduced system ma-
trices ��, �� and �� are computed as following

�� � 	�

T
�	� 


�� � 	�
T
�	� 
 (24)

�� � 	�
T
�	� �

RESULTS AND DISCUSSIONS
In this work it has been presented an alternative

hybrid approach to solve the damage identification
problem involving the estimation of the unknown
stiffness parameters. In order to evaluate the ca-
pability of this new approach two different struc-
tures have been considered, both modeled through
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the finite element technique: a 3-bay truss structure
(12-DOF) obtained from a finite element model of
bar and a 20-DOF beam structure. The real experi-
mental data, to be used in the optimization method,
have been simulated by using the same finite ele-
ment model. In order to generate a damaged struc-
ture a reduced value on some stiffness parameters
have been imposed on the finite element discretiza-
tion.

It has been noticed that when the considered sys-
tems present a low number of DOFs the standard
conjugate gradient method is applied in a satis-
factory way to the damage identification problem
[14]. However when this systems present a slightly
high number of DOFs, the standard conjugate gra-
dient method could not be applied directly to solve
the associated inverse vibration problem, because
the initial guess of the unknown quantities can not
be chosen arbitrarily. For this reason, it has been
adopted the stochastic method of GA to find a pri-
mary solution which has been assumed as initial
guess.

Regarding to the genetic algorithm method, the
minimization problem is defined by equation (5)
and the parameters employed in this technique are
taken as: tournament selection operator; geometri-
cal crossover operator; non-uniform mutation op-
erator; mutation probability of 50%; fixed popula-
tion size of 100 individuals, fixed maximal genera-
tion number of 2000 and 20% best individuals kept
when the epidemical operator is activated.

The Truss Structure
The numerical example considered here is a 3-

bay truss structure (see Fig. 1), composed of
15 bars, clamped at one end. The truss is com-
posed by aluminum bars (� � 	��� ��
�� and
� � �� ��� ) with a square cross section area
	 � ��� � ���� ��, where the nondiagonal ele-
ments are ��� � long. For this numerical example
it has been used the finite element method to calcu-
late the mass and the stiffness matrices that appear
in Eq. (1), note that for this example one finite el-
ement for each bar has been used. As far as the
damping matrix is concerned, it has been assumed
that it is proportional to the undamaged stiffness
matrix � � �����. Furthermore, it has been as-
sumed an external force of intensity ���� � ������
N applied at nodes III and IV in the positive diag-
onal direction constant with time and the following
initial conditions have been adopted ���� � � and
����� � �. The following damage configuration has
been considered: a 30% damage over the element
7; 20% over the element 13; 15% over the element
2; 10% over the element 10 and a 5% damage over
the element 4. All the others elements have been
assumed as undamaged for the generation of the

experimental data.
The numerical results have been obtained con-

sidering two different cases: noiseless and noisy
experimental data; i.e the displacements of the
nodes (see Fig. 1) of the structure along � and  
directions. Numerical simulations have been per-
formed assuming the final time as �� � 
 s and a
time step �� � 
��� ���� s.

The experimental data have been obtained from
the exact solution of the direct problem (noiseless
data) or by adding a random perturbation error to
the exact solution of the direct problem (noisy data)
in the following form

�
������ � ���� � ��� (25)

where � is the standard deviation of the errors and
� is a random variable taken from a normal dis-
tribution such that � � 	ormal(0;1). For nu-
merical purposes, the � value has been adopted in
such a way that the additional noisy is about 1% of
the average measured displacement data. The stop-
ping criteria have been set by using Eq. (19) with
�
 � ����� for the noiseless case. The stopping
criteria have been set by using Eq. (22) with �� de-
fined by Eq. (21) for the noisy case.

If additional informations are available, for ex-
ample the damage location and/or the damage di-
mension, they should be used in order to give a
more suitable choice on the the initial guess for the
conjugate gradient method. However, when these
informations are not available, it has been observed
that the initial guess of the unknown quantities, in
general, can not be chosen arbitrarily [13]; i.e the
conjugate gradient method could not be converge
to the solution. This behaviour has been strongly
noticed when a slightly high DOF dynamical sys-
tem has been studied. For the case under concern
the undamaged configuration has been adopted for
the initial guess. Fig. 3 shows the damage factor,
defined as

!"� �
��

� ���
�

��
�

� � �� � � � � � (26)

where ��
� and ��

� are the stiffness parameters for
the undamaged and damaged structures, respec-
tively.

It is important to observe that here the results are
not only compliant with the real values of the con-
sidered damage configuration, but also some esti-
mated stiffness parameters result greater than the
reference values, as one can observe in the ele-
ments five and eleven, where the real structure is
undamaged.

Figs. 4 and 5 present a comparison between
the estimated and exact damage factor values when
noiseless and noisy experimental data are used, re-
spectively, by using the hybrid approach.
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Figure 3: Estimated damage factor for a 3-bay truss
structure when an arbitrary initial guess is employed.
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Figure 4: Estimated damage factor when the GA initial
guess is employed (noiseless data).

Regarding the estimation results presented in
Figs 4 and 5, it has been observed that the hy-
brid approach provides a perfect damage estima-
tion when noiseless experimental data is employed.
A more realistic case is considered when noisy ex-
perimental data is employed and even in this case
satisfactory estimation of damage localization and
quantification have been obtained, except for the
bar number four. One possible explanation for the
wrong estimation for the stiffness of this bar could
be charged to the fact that the forces, that have been
applied to the nodes III and IV (which correspond
also to the nodes of the bar number four), do not
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Figure 5: Estimated damage factor when the GA initial
guess is employed (noisy data).

produced a sufficient elastic displacement on this
element. So that no sufficient “informations” about
the elastic behaviour of this element of the truss can
be provided to the algorithm.

The Beam Structure
The numerical example considered here is a

beam-like structure (see Fig. 2), modeled with 10
beam finite elements and clamped at one end. The
aluminum beam (� � 	��� ��
�� and � � ��
��� ) present the following properties: rectan-
gular cross section area 	 � ��� � ���� ��,
length � � ���
 � and inertial moment � �

�
��������. As far as the damping matrix is con-
cerned, it has been assumed that it is proportional
to the undamaged stiffness matrix � � �����.
In this case it has been assumed that the external
force varies with time: ���� � ��� � 	�� ��� �#��
applied at node number 10, (see Fig. 2); with null
initial conditions on both the displacement and the
velocities of the nodes. Note that usually there is
a difficulty on the experimental measuring of the
rotational DOFs which must be used in the finite
element representation. To overcome this problem,
i.e the explicit dependence on the rotational DOFs
in the finite element representation, the Guyan re-
duction has been employed in order to have a de-
pendency only on the vertical displacements. The
following damage configuration has been consid-
ered: a 20% damage over the element 2; 10% over
the element 5; 15% over the element 9 and a 5%
damage over the element 10. All the others ele-
ments have been assumed as undamaged.
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Figure 6: Estimated damage factor when the GA initial
guess is employed (noiseless data).

As in the previous example two different cases
have been considered: one with noiseless experi-
mental data and one with noisy experimental data.
Numerical simulations have been performed as-
suming the final time as �� � 	 s and the time step
as�� � �������� s. Also in this case without the
application of the hybrid approach it was not possi-
ble both to identify and localize the damage on the
beam. By using the hybrid approach, the damage
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Figure 7: Estimated damage factor when the GA initial
guess is employed (noisy data).

factor has been identified in each single beam ele-
ment of the structure as shown in Figs. 6 and 7 for
the noiseless and noisy cases, respectively.

Regarding the estimation results for the beam
structure, once again it has been observed that, us-
ing the proposed hybrid approach, a perfect esti-
mation has been achieved when noiseless experi-
mental data is considered, while considering noisy
experimental data a satisfactory damage estimation
has been obtained.

FINAL REMARKS
The inverse vibration problem of estimating the

unknown stiffness parameters (damage identifica-
tion), of both a truss and a beam forced dynamic
system has been solved using a hybrid approach,
where it has been employed a stochastic scheme of
minimization (GA) coupled to the conjugate gradi-
ent method.

The insertion of the genetic algorithm method
into the computational procedure is justified be-
cause an arbitrary choice of the initial guess for the
conjugate gradient method has been showed as an
inappropriate procedure when dynamical systems
with a high DOF number are considered.

The application of the hybrid approach has been
required a higher CPU time, which could be seen
as a drawback. In fact, as bigger is the dynami-
cal system considered, more time-consuming is the
computational procedure. However, this problem
could be solved through a parallel implementation
of the GA, since this kind of problem have already
been solved for an inverse heat conduction problem
[21].
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